case class StaticMapState[A, R, S[_]](rewards: Map[A, S[R]], penalty: S[R])(implicit evidence$1: Functor[S]) extends State[Unit, A, R, S] with Product with Serializable
Ordering
- Alphabetic
- By Inheritance
Inherited
- StaticMapState
- Serializable
- Serializable
- Product
- Equals
- State
- AnyRef
- Any
- Hide All
- Show All
Visibility
- Public
- All
Instance Constructors
- new StaticMapState(rewards: Map[A, S[R]], penalty: S[R])(implicit arg0: Functor[S])
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
act(action: A): S[(R, This)]
- Definition Classes
- State
-
def
actions: Set[A]
- Definition Classes
- State
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
val
dynamics: Map[A, S[(R, This)]]
For every action you could take, returns a generator of the next set of rewards.
For every action you could take, returns a generator of the next set of rewards. This is a real world, or a sample model. If we want the full distribution we're going to have to build out a better interface. Good enough for now.
- Definition Classes
- StaticMapState → State
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
val
invalidMove: S[(R, This)]
- Definition Classes
- StaticMapState → State
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
def
isTerminal: Boolean
Returns a list of possible actions to take from this state.
Returns a list of possible actions to take from this state. To specify the terminal state, return an empty set.
- Definition Classes
- State
-
def
mapK[N[_]](f: FunctionK[S, N])(implicit N: Functor[N]): State[Unit, A, R, N]
- Definition Classes
- State
-
def
mapObservation[P](f: (Unit) ⇒ P)(implicit M: Functor[S]): State[P, A, R, S]
- Definition Classes
- State
-
def
mapReward[T](f: (R) ⇒ T)(implicit M: Functor[S]): State[Unit, A, T, S]
- Definition Classes
- State
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
val
observation: Unit
- Definition Classes
- StaticMapState → State
- val penalty: S[R]
- val rewards: Map[A, S[R]]
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
edit this text on github
ScalaRL
This is the API documentation for the ScalaRL functional reinforcement learning library.
Further documentation for ScalaRL can be found at the documentation site.
Check out the ScalaRL package list for all the goods.